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CHAPTER 9 -- VIBRATORY MOTION

QUESTION  SOLUTIONS

9.1)  An ideal spring attached to a mass m = .3 kg
provides a force equal to -kx, where k = 47.33 nt/m is
the spring's spring constant and x denotes the spring's
displacement from its equilibrium position.  Let's
assume that when such a spring is displaced a
distance x = 1 meter, the period of oscillation (this is
defined as the amount of time required for the system to oscillate through one
complete cycle) is T = .5 seconds per cycle.

a.)  When the mass is displaced a distance 2x = 2 meters, what is its new period?
Solution:  The temptation is to assume that because the displacement is doubled, the
period will be doubled.  That doesn't happen.  Why?  Because the farther you pull the
spring, the bigger the restoring force (remember, the restoring force is a linear function
of x).  So although the mass has farther to travel in the 2x situation, the greater
average force over any given half cycle keeps the period the same.

b.)  Given the numbers in the original statement of the set-up, would it have
been possible for the period to have been any other number other than .5 seconds per
cycle?  Explain.

Solution:  It turns out that the period of an ideal spring is solely determined by the
spring constant k and the mass attached to the spring.  As both of those values are
fixed in the problem, the period must be the value calculated.

9.2)  A vertical spring/mass system oscillates up and down.  At t = 0, the mass is at
equilibrium moving downward.  Through how many cycles will the system have
moved by the time the mass has passed by that point five times, not including its
first passage at t = 0?

Solution:  The mass moves down to the bottom of its motion, then comes back up passing
equilibrium for the first time after having traveled through half a cycle.  It proceeds upward
to the top of its motion, then down again passing equilibrium for its second time after
having completed another half a cycle.  In other words, it passes equilibrium twice per cycle.
Passing equilibrium (or, for that matter, any point other than one of the extremes) five
times means it will have traveled through 2.5 cycles.

9.3)  When you attach a mass to an ideal spring, the force F provided to
the mass by the spring will be proportional to the displacement x of
the mass/spring system from its equilibrium position. Algebraically,
that proportionality can be written as an equality equal to F = -kx,
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where k is the proportionality constant called the spring constant.  One of the things
that is interesting about the oscillatory motion of the mass attached to an ideal
spring is that the mass's motion will have a single period T.  That is, it will always
take the same amount of time for the mass to oscillate through one cycle no matter
what the initial displacement was.  Having said that:

a.)  Sketch the Force versus Displacement graph for an ideal
spring.  Remember that the displacement of a spring from its
equilibrium position can be either positive or negative.

Solution:  See sketch.

b.)  Briefly, explain why the period of an ideal spring/mass
system doesn't change if the initial displacement of the mass is increased or
decreased.

Solution:  Increasing the displacement requires the mass to travel farther to get
through one cycle, but because the force is proportionally larger, the one-cycle time of
travel remains the same no matter what initial displacement you try.

c.)  Now for the fun part.  Consider a second, non-ideal spring
whose force expression is -bx3, where b is some spring constant.
On the graph you produced in Part a, make an approximate sketch
of the Force versus Displacement graph for this spring force (don't
get anal about this--you don't need numbers, just show the trend
of the force as x goes positive and negative).

Solution:  See sketch.

d.)  Attach the non-ideal spring to the same mass you used in Part a and b.  It is
possible to displace this spring/mass system so that when released, it oscillates
with the same period as was the case with the ideal spring used in Part a.  Take that
displacement, double it, displace the non-linear system that doubled distance, and
release.  Will the period of the resulting oscillation be greater than, less than, or the
same as T?

Solution:  This is tricky . . . and good for you to think through.  Look at the graph of
the ideal spring and think about what happens when you attach a mass to that
spring.  You displace the mass.  The spring provides a certain amount of force.  The
resulting action produces oscillatory motion whose period is T.  If you double the
displacement with that ideal spring, the force doubles and the period remains the same.
Now look at the graph of the non-ideal spring and think about what happens when
you attach a mass to it.  You displace the mass.  The spring provides a certain
amount of force.  The resulting action produces oscillatory motion whose period is T.  If
you double the displacement of that spring, the force doesn't double, it gets bigger still.
So what happens to the period?  The mass has twice as far to travel, but the force is
more than double, so it should take less time to make a round trip.  In other words,
doubling the displacement decreases the period.  Please note that this is similar to an
AP question that was asked several years ago.
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9.4)  Can a spring have a force function of -kx4?  Explain.
Solution:  The only forces that qualify as periodic (i.e., forces that produce oscillatory
motion) are those that ALWAYS motivate the attached mass back toward the equilibrium
position of the system.  As an example, an ideal spring has the force function F = -kx.  If the
displacement x of such a spring is positive, the force direction will be negative (put a
positive x into F = -kx and F becomes negative).  By the same token, if the displacement is
negative, the force direction will be positive (put a negative x into F = -kx and F becomes
positive).  Force functions that are even powers do not accommodate that constraint.  The
function -kx4 yields a negative force when x is positive (this is good), but doesn't yield a
positive force when x is negative (this is bad).  In short, this function won't do.

9.5)  You have access to Gepetto's Workshop, complete with Newton scales, meter
sticks, balances--all sorts of science-y things.  Someone gives you an ideal spring and
asks you to determine its spring constant.  How might you do that?

Solution:  The spring constant tells you how much force per length of displacement is
required to displace a spring.  That is, it is the ratio of force F  and the associated
displacement x that comes with the application of that force.  Mathematically, this is F/x
(note that spring constants are ALWAYS positive).  To determine a spring constant
experimentally, all you have to do is apply a known force, see how much displacement that
application produces, and divide the one into the other.  Using the stuff in Gepetto's, there
are a couple of ways to do this.  One would be to hang a known mass m from the spring
and measure the resulting spring displacement x.  The force would be the weight of the
mass mg, and the spring constant would be mg/x.  Another way would be to attach a
Newton scale to the hanging spring and measure the force F required to pull the spring
down a given distance y.  Again, k = F/y.

9.6)  Most people know that frequency measures the number of cycles through which
an object oscillates per unit time.  What does angular frequency measure?

Solution:  Just as frequency, measured in cycles per second, tells you the number of cycles
that are swept through by an oscillating object in one second, angular frequency, measured
in radians per second, tells you the number of radians that are swept through by an
oscillating object in one second (note that there are 2 radians in one cycle--in fact, the
relationship between angular frequency and frequency is ω  = 2ν ).  An object that
oscillates through 2 radians per second has a frequency of one cycle per second.  An object
that has a frequency of 2 cycles per second has an angular frequency of 4 radians per second.
This probably seems like a bizarre way to measure oscillatory rates, but it is perfectly
sensible when you consider the problem it is meant to remedy.  Assume you have a
spring/mass system that is oscillating along the x-axis around an equilibrium position.  The
relationship that defines the mass's position is a sine function.  Specifically, x = A sin θ
(note that the argument of the sine function has to have the units of radians--an angle).
The problem with this relationship is that it isn't explicit in time.  So how can we get
obvious time dependence into the equation?  By rewriting θ  as a constant times time (i.e.θ
= ω t--we can do this as long as the constant ω  has the units of radians per second . . .
multiply radians per second by seconds and you get radians), we can write the position
function as x = A sin ω t.  Expressed this way, the ω  term in the position expression
governs how fast the system vibrates.  This just makes sense.  It takes 2 radians for a
sine wave to repeat itself.  If ω  is large, it only requires a small time t for the system to
execute one cycle (i.e., for ω t to equal 2 radians).  This is exactly what you would expect if
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the oscillatory motion was happening as fast as the large ω  suggests (remember, a large
ω  means the system is oscillating through a lot of radians per second).

9.7)  A fixed length of string is cut and loops are made at both ends.  The upper end-
loop is attached to a ceiling hook while the lower end-loop is used to support a hook-
mass m.  The mass is pulled to the side and released making a pendulum that
swings back and forth.  The period is measured as T.  The original mass is removed
and a second hook-mass from the same mass set, this one of mass 10m, is placed on
the string and made to swing back and forth with the same amplitude.  The new
period is found to be larger than T.

a.)  Does this mean the pendulum swings faster or slower?
Solution:  A larger period means it takes a longer time for the body to travel through
one oscillation.  That means it swings more slowly than before.

b.)  Some students look at the data and conclude that the pendulum's period is a
function of the bob's mass.  In fact, this isn't true!  What is probably
causing the disparity in the periods?

Solution:  The larger mass is probably longer, so the distance from the
ceiling support to the center of mass of the pendulum bob has
lengthened.  As the period of a simple pendulum is dependent upon the
length of the pendulum arm, that would explain the difference in
periods.

9.8)  Newton's Second Law is used to sum up the forces acting on an oscillating
mass.  The resulting expression is then manipulated and found to have the form
(d2x/dt2) + bx = 0.  Having access to this expression:

a.)  What can you say about the system's angular frequency?
Solution:  The angular frequency will simply be the square root of the constant b.  This
was derived in your book for a spring, but it works for any system that oscillates with
simple harmonic motion.  In fact, that is one way to determine if you have simple
harmonic motion--sum the forces, then manipulate the expression to see if you can get
it into the form shown above.

b.)  What can you say about the system's frequency?
Solution:  If you know a system's angular frequency, you know its frequency from ω  =
2ν .

c.)  What can you say about the system's period?
Solution:  If you know a system's frequency, you know its period from  ν  = (1/T).
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9.9)  What is the single characteristic that is common to all vibrating (oscillatory)
systems?

Solution:  All oscillatory systems must have a restoring force involved somehow.  That is, there
must be a force in the system that ALWAYS motivates (i.e., accelerates) the system back
toward its equilibrium position.

9.10)  The acceleration of gravity on earth is approximately six times that of the
acceleration on the moon.  A pendulum on earth has a period of 1 second per cycle.  Will
the pendulum's period change if it is used on the moon?  If so, how so?

Solution:  Period is the inverse of frequency (T = 1/ν ).  Frequency is directly proportional to

the angular frequency (ω  = 2ν ).  The angular frequency for a pendulum is (g/L)1/2, where
L is the pendulum arm and g is the effective acceleration of gravity.  If the acceleration of
gravity drops by 6, the angular frequency changes by (6)1/2.  That means the frequency
changes by (6)1/2, which means the period changes by 1/(6)1/2.

9.11)  Double the length of a pendulum arm.  How will the pendulum's frequency
change?  How will the pendulum's period change?

Solution:  The frequency (ν  = ω /2) of a pendulum is (g/L)1/2/(2).  Doubling the length

changes the frequency by (1/2)1/2, or .707 of the original.  The period is the inverse of the
frequency, so it will change by 1/(1/2)1/2, or 1.4 of the original period.

9.12)  How are frequency and period related?
Solution:  As has been said in the last several problems, the frequency is the inverse of the
period.

9.13)  You are sitting on a jetty.  You notice ocean waves are
coming in approximately 10 meters apart.  It takes 30
seconds for three crests to pass you by.  What is the
frequency, period, and angular frequency of the wave train?

Solution:  Three crests corresponds to two full cycles passing by (look at the sketch).  Two
cycles passing by every 30 seconds yields a frequency of 2 cycles per 30 seconds, or 1/15 cycle
per second.  The inverse of that, 15 seconds per cycle, is the period.  As for the angular
frequency, ω  = 2ν  = 2(1/15) = 6.28/15 = .418 radians per second.

9.14)  A spring with spring constant k = .25 newtons per meter vibrates with
frequency ν  = .5 hertz.  Across the lab, a string with a small mass m = .15
kg attached to it makes a simple pendulum.

a.)  If the frequency of the pendulum and the frequency of the spring are to be
the same, approximately how long must the string be?

Solution:  The frequency of a spring is (k/m)1/2/(2) while the frequency of a simple

pendulum is (g/L)1/2/(2).  Equating the two, dropping away the common 2 terms,
and squaring both sides of the relationship leaves us with (k/m) = (g/L).  Evidently, L
= mg/k = (.15 kg)(9.8 m/s2)/(.25 kg.m/s2/m) = 5.88 meters.
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b.)  Why are you being asked for an approximate answer?  That is, given what
you know, why can't you give an exact answer?

Solution:  Everything done in the real world that is based on theoretical calculations
is an approximation.  We've assumed that the spring is ideal, that the pendulum bob
is a point mass, that the pendulum arm is massless, and probably most importantly,
that the pendulum oscillation is very, very small (see Part c for more on this).  These
may be reasonable assumptions to make, but they will introduce some hopefully
small discrepancies in the final product.

c.)  For the frequency to be good, is there any limit on the size of the oscillations
of the pendulum?

Solution:  The theory used to derive the angular frequency expression for the
pendulum assumed that the oscillations were small enough so that, to a very good
approximation, sin θ  = θ  (otherwise, the second order differential equation was not
in the form characteristic of simple harmonic motion).  Depending, of course, on how
anal you want to be, that approximation is only good for angles less than, say, .1
radians (about 5o).

9.15)  What is the difference between a simple pendulum and a
physical pendulum of same mass and length?  What approach would
you use to derive from scratch an expression for the period of either?

Solution:  A simple pendulum is a point mass attached to a massless
string whereas a physical pendulum is usually comprised of a massive,
extended pendulum arm that is the pendulum (that is, there isn't
usually a final, concentrated mass at the end of the pendulum arm).
The way you get the characteristic equation for any pendulum is to use Newton's Second
Law (that is, sum up the torques about the pin and set that equal to Ipin(d2 θ /dt2)).

Manipulate that expression into the characteristic form for simple harmonic motion (i.e.,
(angular acceleration) + (constant)(angular displacement) = 0).  Noting that you will
probably have to take a small angle approximation to turn the resulting sin θ  into the
displacement term θ , the constant in front of the displacement term in that final
relationship will equal the angular frequency squared.  From that you can get the
frequency (ω  = 2ν ) and period (T = 1/ν ).

9.16)  You live in California (Los Angeles).  You're a physics teacher, complete with
sadistic streak.  You have your students calculate the theoretical period of a
pendulum system.  They determine that value to be T.  You then claim that no
matter how good and precise your students' set-up is, its period will never exactly
equal the theoretically calculated value, even if your students do the experiment in a
vacuum.  What are you talking about?  (Note:  This isn't obvious--think about the
parameters that determine a pendulum's period, and how they might be off).  Once
you've figured out the problem, approximate by how much your theoretical period
will be off (note that the latitude of LA is approximately 22o).  Is this going to be
noticeable?

Solution:  The period of a pendulum is determined by the expression 2(L/g)1/2.  Which
of those variables might be a bit hinky due to the fact that you are in LA (no, this is not
the set-up for a west coast joke, though there are undoubtedly some doozies out there
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just waiting to happen)?  The key is found in the fact that the gravitational acceleration
is predicated on the assumption that the earth is not spinning.  In fact, the earth is
spinning.  We dealt with this problem in the Newton's Laws chapter.  What was said at
that time was the following:
     Think about holding the string end of a simple pendulum while standing on the edge
of a rotating merry go round.  From your perspective, what does the pendulum bob
appear to do?  It seems to push out away from the center (actually, it's really trying to
follow straight-line motion--your holding it, via the string, applies a force that pulls it
into circular motion . . . hence the feeling that it pushes you outward).  If the earth were
stationary, a pendulum would be gravitationally attracted to the center of the earth and
the string of a freely hanging pendulum (i.e., one that was not swinging) would orient
itself between the pendulum's contact point (i.e., where the pendulum is attached to,
say, the ceiling) and the earth's center.  The problem is that the earth is rotating.  This
means that along with the tension force required to counteract gravity, there must be a
tension component that pulls the pendulum bob into circular motion.  The consequence is
that the line of the pendulum will not be toward the earth's center but will be off a bit
toward the equator (see sketch below).

The long and the short of all of this is that the acceleration the bob feels along the line of its
swing is not g but the vector sum of g and the centripetal acceleration v2/(rcircle)2 (see

sketches below).    That means the g term in the 2(L/g)1/2 expression isn't really going to
be 9.8 m/s2 but something less.  I wouldn't suggest you take the time to do the
calculations, but you could use the relationships suggested by the sketches shown to
determine exactly how big the effective acceleration term is and, in doing so, would find that
the discrepancy is indeed minuscule.

9.17)  Consider the expression x = A sin (ω t + δ ).

a.)  What does the A term do for you ?
Solution:  The maximum value a sine function can have is one.  If you want your
oscillation to have a maximum displacement other than one, you have to multiply the
sine term by that maximum displacement.  In short, A is the amplitude of the motion
as measured relative to the equilibrium point.
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b.)  What does the ω  term do for you?
Solution:  It gives you a feel for how fast the oscillation is occurring.  An angular
frequency of 6.28 radians/second (i.e., 2 rad/sec) is the same as 1 cycle/second.  As was
pointed out earlier, the angular frequency term is necessary so that time dependence
can be inserted into an expression that must, inherently, be a function of an angle
(hence, ω t   replaces θ  in the sine function).

c.)  What does the δ  term do for you?
Solution:  This is called the phase shift.  Without it, the expression would require that
at t = 0, the displacement x would have to be zero.  Additionally, it would require
that just after t = 0, the motion proceed into the positive region of the oscillation.
What the phase shift allows you to do is to move the axis, so to speak, allowing the
displacement to be whatever you want at t = 0.

d.)  What does the expression in general do for you?
Solution:  This expression tells you where the oscillating body is, relative to its
equilibrium position, at any point in time.

9.18)  Identify a system in which a restoring force exists, and identify what the
restoring force actually is in the system.

Solution:  A spring system has a force--the spring force--that constantly attempts to
motivate the system toward its equilibrium position.

9.19)  Identify a system in which a restoring torque exists, and identify what force
provides that restoring torque.

Solution:  A pendulum system has a force--the force of gravity--that constantly provides a
torque that attempts to motivate the system toward its equilibrium position.

PROBLEM  SOLUTIONS

9.20)  A = .5 meters; T = .3 sec/cycle; and m = 1.2 kg.

a.)  Oscillatory frequency:

ν = 1/T
   = 1/(.3 sec/cycle)
   = 3.33 cycles/sec    (or 3.33 hz).

b.)  Angular frequency (the number of radians per second the motion
sweeps through):
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ω  = 2 ν
    = 2(3.14)(3.33 hz)
    = 20.94 rad/sec.

c.)  Spring constant:

 ω  = (k/m)1/2

      ⇒     k = ω2m
       = (20.94 rad/sec)2(1.2 kg)
       = 526.4 nt/m.

d.)  Maximum velocity (occurs where acceleration is zero, or while mass
passes through equilibrium position):

vmax = ωA
         = (20.94 rad/sec)(.5 m)
         = 10.47 m/s.

e.)  Magnitude of the maximum acceleration (occurs where force is
greatest, or at extremes of motion):

amax =  ω2 A

         = (20.94 rad/sec)2(.5 m)
         = 219.2 m/s2.

f.)  Energy in system:

E = (1/2)kA2

    =   .5  (526.4 nt/m)(.5 m)2

    = 65.8 joules.

9.21)  m = .25 kg; k = 500 nt/m; vmax = 3 m/s.

a.)  Angular frequency:

ω  = (k/m)1/2

    = [(500 nt/m)/(.25 kg)]1/2

    = 44.72 rad/sec.

b.)  Frequency:
ω  = 2 ν
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    ⇒     ν = ω /2
     = (44.72 rad/sec)/2
     = 7.12 hz.

c.)  Period:
T = 1/ ν
   = 1/(7.12 hz)
   = .14 sec/cycle.

d.)  Amplitude:

vmax = ωA
    ⇒     A = vmax/ω

             = (3 m/s)/(44.72 rad/sec)
                = .067 m.

e.)  Total energy:

Et = (1/2)kA2

     = .5(500 nt/m)(.067 m)2

     = 1.125 joules.
f.)  Magnitude of maximum force (this will be applied when the

acceleration is maximum--i.e., at the extremes):

amax = ω2 A

         = (44.72 rad/sec)2(.067 m)
         = 134 m/s2.

N.S.L.   ⇒ Fmax. = mamax
= (.25 kg)(134 m/s2)
= 33.5 nts.

9.22)  The most general position as a function of time expression is:

x = A sin (ωt + φ)    or    x = A sin (2 νt + φ).

In our case, we know that x = .7 sin (14t - .35).  Matching the appropriate
variables leads to:
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a.)  Amplitude:   A = .7 meters (by inspection).

b.)  Angular frequency:  ω  = 14 rad/sec (by inspection).

c.)  Frequency:

ω  = 2 ν
    ⇒     ν =  ω /2

      = (14 rad/sec)/2
      = 2.23 hz.

d.)  Position at t = 3 seconds:

x = .7 sin (14t - .35)
   = .7 sin (14(3 sec) - .35)
   = -.51 m.

e.)  Position at t = 3.4 seconds:

x = .7 sin (14t - .35)
   = .7 sin (14(3.4 sec) - .35)
   = -.088 m.

f.)  Velocity at t = 0:

v =  ωA cos (ωt + φ)
   = (14 rad/sec)(.7 m) cos (14t - .35)
   = (14 rad/sec)(.7 m) cos (14(0) - .35)
   = 9.2 m/s.

g.)  Acceleration at t = 0:

a = - ω2Asin (ωt + φ)
   = -(14 rad/sec)2(.7 m) sin (14t - .35)
   = -(14 rad/sec)2(.7 m) sin (14(0) - .35)
   = 47 m/s2.
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9.23)  The period of oscillation T is related to the motion's frequency ν  by the
relationship ν  =1/T.  The frequency ν  is related to the angular frequency ω   by the
relationship ω  =2 ν .  In simple harmonic motion, the angular frequency is a function
of the pendulum arm length L and the acceleration of gravity g.  That is:

ω   = (g/L)1/2

     ⇒     g =  ω2L
        =  (2 ν)2L

      = (2/T)2L
      = (2/(2 sec))2(1.75 m)
      = 17.27 m/s2.

Notice that the mass has nothing to do with anything here (just as the mass
would have nothing to do with the rate at which velocity changes as a body falls near
the planet's surface).

9.24)
a.)  The equation α  + (12g/7L) θ  = 0 is of the form "acceleration plus

constant-times-displacement equals zero" (even though the acceleration and
displacement terms are angular ones).  That means the motion is, by
definition, simple harmonic in nature.

b.)  For simple harmonic motion, we know that the square of the angular
frequency of the motion is equal to the constant in front of the displacement
term.  In this case:

ω2 = 12g/7L
          ⇒     ω  = (12g/7L)1/2.

We also know that w = 2 ν , or:

ν = ω /2
       = [(12g)/(7L)]1/2/(2)

    = (1.7g/L)1/2/(2)
    = [(1.7)(9.8 m/s2)/(1.3 m)]1/2/[(2(3.14)]
    = .57 cycles/second.
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9.25)  Note that when the 3 kg mass is attached to the spring, gravity acting on
the mass applies a force such that the spring elongates .7 meters.  Also, at t = 0, y =
-.15 meters moving away from equilibrium:

a.)  Spring constant:  The spring constant tells you how much force F is
required to elongate the spring.  In this case, GRAVITY is used to elongate the
spring a distance d, or:

k = (mg)/d
      = (3 kg)(9.8 m/s2)/(.7 m)
      = 42 nt/m.

b.)  Angular frequency:

ω  = (k/m)1/2

    = [(42 nt/m)/(3 kg)]1/2

    = 3.74 rad/sec.

c.)  Amplitude:  A = .4 meters (stated in problem: "once at equilibrium, the
system is displaced an additional .4 meters and released").

d.)  Frequency:
ω  = 2 ν
    ⇒     ν = ω /2

      = (3.74 rad/sec)/2
      = .6 hz.

e.)  Period:

T = 1/ ν
   = 1/(.6 cycles/sec)
   = 1.67 sec/cycle.

f.)  Total energy:

Et = (1/2)kA2

     = .5(42 nt/m)(.4 m)2

     = 3.36 joules.

g.)  Maximum velocity:

vmax = ωA
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         = (3.74 rad/sec)(.4 m)
         = 1.5 m/s.

h.)  The velocity is maximum at equilibrium.

i.)  Maximum acceleration:

amax = ω2A

         = (3.74 rad/sec)2(.4 m)
         = 5.6 m/s2.

j.)  The acceleration is maximum at either extreme (i.e., at x = +A).

k.)  To determine the general algebraic expression (using y as the position
variable), we start with the standard form:

     y = A sin (ωt + φ)    or    y = A sin (2 νt + φ).

Knowing the amplitude and the angular frequency, we can immediately
write:

y = .4 sin (3.74t + φ).

The only variable we need to determine anew is the phase shift φ .  We know
that at t = 0, y = -.15 moving away from equilibrium.  The sine wave shown on
the next page highlights this situation.  To determine the phase shift φ :

We know that in general,

y = .4 sin (3.74t + φ).

Substituting in t = 0 and y = -.15, we can write:

-.15 = .4 sin (3.74(0) + φ)
-.15 = .4 sin ( φ).

Solving for φ  yields:

φ  = sin-1 [(-.15)/(.4)]
   = -.384 rad.
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y(t)--(original 
       axis)

t

01

A = .4 m

y = -.15 mposition where mass is
moving AWAY FROM
     EQUILIBRIUM

position where mass is
moving AWAY FROM
     EQUILIBRIUM

01 01

 possible 
new axis

 possible 
new axis

02
(How do you know?  As time 
increases from t = 0, y gets 
more negative--ie. further 
away from y=0)

The question is, "What does that mean?"  That is, there are two angles
that could possibly satisfy the math in this situation, one in the fourth
quadrant ( φ 1 in the sketch below) and one in the third quadrant ( φ 2).  We
have been given a value for the fourth quadrant angle (that is, φ 1 = -.384

radians).  We can find the other using math and a bit of logic.
To tell which of the two we really want, look at the sketch below (both

possible axes are shown).

From observation, it is evident that the object is moving away from
equilibrium when in the third quadrant.  There is no formula to get the angle
required to move the axis to the appropriate third-quadrant position on the
sine wave (we can move left or right to get there--either will do), so we will
have to use our heads.

Doing so, the sketch allows us to see that φ 2 is equal to the addition of
the magnitude of φ 1 and - (i.e., -3.14 + .384 = -2.76 rad).  Another possibility
would be to add the magnitude of φ 1 to + (i.e., 3.14 + .384 = 3.53 rad).  Both
cases are shown in the figure; both cases designate an appropriate position for
the new axis.

Bottom line:  The general algebraic expression that defines the position of
the body as a function of time is:

y = .4 sin (3.74t - 2.76)
or
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y = .4 sin (3.74t + 3.53).

Either is acceptable.

9.26)  Although this probably appears to be a completely off-the-wall problem,
it is characteristic of a class of problems that have a common hallmark.  Specifically,
they all give information about the force acting on a body moving in periodic motion
(or they give enough information for you to derive a force relationship--in this case, we
derived the required expression in the previous chapter), and they always ask
something about the period of the motion.

a.)  If we can determine Jack's period, we will have the period of the
satellite (the two have to be the same if the satellite is going to take a picture
of Jack head every time it appears out the top (at the bottom, it will be his
feet that will appear).  The key to finding Jack's period is found in the
gravitational force that keeps him oscillating between poles.

Assuming the motion is in the y direction and leaving the sign of the
acceleration embedded in the ay term, we can write:

   ∑Fy:

  
  
− GmemJ

re
3









y = mJay .

Rearranging, this implies that:

      
  
ay + Gme

re
3









y = 0 .

This is the characteristic equation for simple harmonic motion.  Knowing
that, we also know that the angular frequency of Jack's oscillatory motion
must be equal to the square root of the constant in front of the displacement
term.  Using our relationships between angular frequency, frequency, and
period, we can write:

     ω  = (Gme/re
3)1/2.

As
  ω  = 2 ν          and          T = 1/ ν,

we can write:
             T = 2/(Gme/re

3)1/2.
Wasn't that fun!


